bagua.torch_api.communication¶
Module Contents¶
- class bagua.torch_api.communication.ReduceOp¶
Bases:
enum.IntEnum
An enum-like class for available reduction operations:
SUM
,PRODUCT
,MIN
,MAX
,BAND
,BOR
,BXOR
andAVG
.Initialize self. See help(type(self)) for accurate signature.
- AVG = 10¶
- BAND = 8¶
- BOR = 7¶
- BXOR = 9¶
- MAX = 3¶
- MIN = 2¶
- PRODUCT = 1¶
- SUM = 0¶
- bagua.torch_api.communication.allgather(send_tensor, recv_tensor, comm=None)¶
Gathers send tensors from all processes associated with the communicator into
recv_tensor
.- Parameters
send_tensor (torch.Tensor) – Input of the collective.
recv_tensor (torch.Tensor) – Output of the collective, must have a size of
comm.nranks * send_tensor.size()
elements.comm (Optional[bagua_core.BaguaSingleCommunicatorPy]) – A handle of the Bagua communicator to work on. By default, the global communicator of the default process group will be used.
- bagua.torch_api.communication.allgather_inplace(tensor, comm=None)¶
The in-place version of
allgather
.- Parameters
tensor (torch.Tensor) –
comm (Optional[bagua_core.BaguaSingleCommunicatorPy]) –
- bagua.torch_api.communication.allreduce(send_tensor, recv_tensor, op=ReduceOp.SUM, comm=None)¶
Reduces the tensor data across all processes associated with the communicator in such a way that all get the final result. After the call
recv_tensor
is going to be bitwise identical in all processes.- Parameters
send_tensor (torch.Tensor) – Input of the collective.
recv_tensor (torch.Tensor) – Output of the collective, must have the same size with
send_tensor
.op (ReduceOp) – One of the values from
ReduceOp
enum. Specifies an operation used for element-wise reductions.comm (Optional[bagua_core.BaguaSingleCommunicatorPy]) – A handle of the Bagua communicator to work on. By default, the global communicator of the default process group will be used.
Examples:
>>> from bagua.torch_api import allreduce >>> >>> # All tensors below are of torch.int64 type. >>> # We have 2 process groups, 2 ranks. >>> send_tensor = torch.arange(2, dtype=torch.int64) + 1 + 2 * rank >>> recv_tensor = torch.zeros(2, dtype=torch.int64) >>> send_tensor tensor([1, 2]) # Rank 0 tensor([3, 4]) # Rank 1 >>> allreduce(send_tensor, recv_tensor) >>> recv_tensor tensor([4, 6]) # Rank 0 tensor([4, 6]) # Rank 1 >>> # All tensors below are of torch.cfloat type. >>> # We have 2 process groups, 2 ranks. >>> send_tensor = torch.tensor([1+1j, 2+2j], dtype=torch.cfloat) + 2 * rank * (1+1j) >>> recv_tensor = torch.zeros(2, dtype=torch.cfloat) >>> send_tensor tensor([1.+1.j, 2.+2.j]) # Rank 0 tensor([3.+3.j, 4.+4.j]) # Rank 1 >>> allreduce(send_tensor, recv_tensor) >>> recv_tensor tensor([4.+4.j, 6.+6.j]) # Rank 0 tensor([4.+4.j, 6.+6.j]) # Rank 1
- bagua.torch_api.communication.allreduce_inplace(tensor, op=ReduceOp.SUM, comm=None)¶
The in-place version of
allreduce
.- Parameters
tensor (torch.Tensor) –
op (ReduceOp) –
comm (Optional[bagua_core.BaguaSingleCommunicatorPy]) –
- bagua.torch_api.communication.alltoall(send_tensor, recv_tensor, comm=None)¶
Each process scatters
send_tensor
to all processes associated with the communicator and return the gathered data inrecv_tensor
.- Parameters
send_tensor (torch.Tensor) – Input of the collective, the size must be divisible by
comm.nranks
.recv_tensor (torch.Tensor) – Output of the collective, must have equal size with
send_tensor
.comm (Optional[bagua_core.BaguaSingleCommunicatorPy]) – A handle of the Bagua communicator to work on. By default, the global communicator of the default process group will be used.
- bagua.torch_api.communication.alltoall_inplace(tensor, comm=None)¶
The in-place version of
alltoall
.- Parameters
tensor (torch.Tensor) –
comm (Optional[bagua_core.BaguaSingleCommunicatorPy]) –
- bagua.torch_api.communication.barrier(comm=None)¶
Synchronizes all processes. This collective blocks processes until all processes associated with the communicator enters this function.
- Parameters
comm (Optional[bagua_core.BaguaSingleCommunicatorPy]) – A handle of the Bagua communicator to work on. By default, the global communicator of the default process group will be used.
- bagua.torch_api.communication.broadcast(tensor, src=0, comm=None)¶
Broadcasts the tensor to all processes associated with the communicator.
tensor
must have the same number of elements in all processes participating in the collective.- Parameters
tensor (torch.Tensor) – Data to be sent if
src
is the rank of current process, and tensor to be used to save received data otherwise.src (int) – Source rank. Default: 0.
comm (Optional[bagua_core.BaguaSingleCommunicatorPy]) – A handle of the Bagua communicator to work on. By default, the global communicator of the default process group will be used.
- bagua.torch_api.communication.from_torch_group(group, stream=None)¶
Convert a Pytorch process group to its equivalent Bagua process group.
- Parameters
group – A handle of the Pytorch process group.
stream (Optional[torch.cuda.Stream]) – A CUDA stream used to execute NCCL operations. If
None
, CUDA stream of the default group will be used. Seenew_group
for more information.
- Returns
A handle of the Bagua process group.
- bagua.torch_api.communication.gather(send_tensor, recv_tensor, dst, comm=None)¶
Gathers send tensors from all processes associated with the communicator to
recv_tensor
in a single process.- Parameters
send_tensor (torch.Tensor) – Input of the collective.
recv_tensor (torch.Tensor) – Output of the collective, must have a size of
comm.nranks * send_tensor.size()
elements.dst (int) – Destination rank.
comm (Optional[bagua_core.BaguaSingleCommunicatorPy]) – A handle of the Bagua communicator to work on. By default, the global communicator of the default process group will be used.
- bagua.torch_api.communication.gather_inplace(tensor, count, dst, comm=None)¶
The in-place version of
gather
.- Parameters
tensor (torch.Tensor) – Input and output of the collective, On the
dst
rank, it must have a size ofcomm.nranks * count
elements. On non-dst ranks, its size must be equal to :attr:count
.count (int) – The per-rank data count to gather.
dst (int) – Destination rank.
comm (Optional[bagua_core.BaguaSingleCommunicatorPy]) – A handle of the Bagua communicator to work on. By default, the global communicator of the default process group will be used.
- bagua.torch_api.communication.init_process_group(store=None)¶
Initializes the PyTorch builtin distributed process group, and this will also initialize the distributed package, should be executed before all the APIs of Bagua.
- Parameters
store (Optional[torch.distributed.Store]) – Key/value store accessible to all workers, used to exchange connection/address information. If
None
, a TCP-based store will be created. Default:None
.
- Examples::
>>> import torch >>> import bagua.torch_api as bagua >>> >>> torch.cuda.set_device(bagua.get_local_rank()) >>> bagua.init_process_group() >>> >>> model = torch.nn.Sequential( ... torch.nn.Linear(D_in, H), ... torch.nn.ReLU(), ... torch.nn.Linear(H, D_out), ... ) >>> optimizer = torch.optim.SGD( ... model.parameters(), ... lr=0.01, ... momentum=0.9 ... ) >>> model = model.with_bagua([optimizer], ...)
- bagua.torch_api.communication.is_initialized()¶
Checking if the default process group has been initialized.
- bagua.torch_api.communication.new_group(ranks=None, stream=None)¶
Creates a new process group.
This function requires that all processes in the default group (i.e. all processes that are part of the distributed job) enter this function, even if they are not going to be members of the group. Additionally, groups should be created in the same order in all processes.
Each process group will create three communicators on request, a global communicator, a inter-node communicator and a intra-node communicator. Users can access them through
group.get_global_communicator()
,group.get_inter_node_communicator()
andgroup.get_intra_node_communicator()
respectively.- Parameters
ranks (Optional[List[int]]) – List of ranks of group members. If
None
, will be set to all ranks. Default isNone
.stream (Optional[torch.cuda.Stream]) – A CUDA stream used to execute NCCL operations. If
None
, CUDA stream of the default group will be used. See CUDA semantics for details.
- Returns
A handle of process group that can be given to collective calls.
Note
The global communicator is used for global communications involving all ranks in the process group. The inter-node communicator and the intra-node communicator is used for hierarchical communications in this process group.
Note
For a specific communicator
comm
,comm.rank()
returns the rank of current process andcomm.nranks()
returns the size of the communicator.
- bagua.torch_api.communication.recv(tensor, src, comm=None)¶
Receives a tensor synchronously.
- Parameters
tensor (torch.Tensor) – Tensor to fill with received data.
src (int) – Source rank.
comm (Optional[bagua_core.BaguaSingleCommunicatorPy]) – A handle of the Bagua communicator to work on. By default, the global communicator of the default process group will be used.
- bagua.torch_api.communication.reduce(send_tensor, recv_tensor, dst, op=ReduceOp.SUM, comm=None)¶
Reduces the tensor data across all processes.
Only the process whit rank
dst
is going to receive the final result.- Parameters
send_tensor (torch.Tensor) – Input of the collective.
recv_tensor (torch.Tensor) – Output of the collective, must have the same size with
send_tensor
.dst (int) – Destination rank.
op (ReduceOp) – One of the values from
ReduceOp
enum. Specifies an operation used for element-wise reductions.comm (Optional[bagua_core.BaguaSingleCommunicatorPy]) – A handle of the Bagua communicator to work on. By default, the global communicator of the default process group will be used.
- bagua.torch_api.communication.reduce_inplace(tensor, dst, op=ReduceOp.SUM, comm=None)¶
The in-place version of
reduce
.- Parameters
tensor (torch.Tensor) –
dst (int) –
op (ReduceOp) –
comm (Optional[bagua_core.BaguaSingleCommunicatorPy]) –
- bagua.torch_api.communication.reduce_scatter(send_tensor, recv_tensor, op=ReduceOp.SUM, comm=None)¶
Reduces, then scatters
send_tensor
to all processes associated with the communicator.- Parameters
send_tensor (torch.Tensor) – Input of the collective, must have a size of
comm.nranks * recv_tensor.size()
elements.recv_tensor (torch.Tensor) – Output of the collective.
op (ReduceOp, optional) – One of the values from
ReduceOp
enum. Specifies an operation used for element-wise reductions.comm (Optional[bagua_core.BaguaSingleCommunicatorPy]) – A handle of the Bagua communicator to work on. By default, the global communicator of the default process group will be used.
- bagua.torch_api.communication.reduce_scatter_inplace(tensor, op=ReduceOp.SUM, comm=None)¶
The in-place version of
reduce_scatter
.- Parameters
tensor (torch.Tensor) – Input and output of the collective, the size must be divisible by
comm.nranks
.op (ReduceOp, optional) – One of the values from
ReduceOp
enum. Specifies an operation used for element-wise reductions.comm (Optional[bagua_core.BaguaSingleCommunicatorPy]) – A handle of the Bagua communicator to work on. By default, the global communicator of the default process group will be used.
- bagua.torch_api.communication.scatter(send_tensor, recv_tensor, src, comm=None)¶
Scatters send tensor to all processes associated with the communicator.
- Parameters
send_tensor (torch.Tensor) – Input of the collective, must have a size of
comm.nranks * recv_tensor.size()
elements.recv_tensor (torch.Tensor) – Output of the collective.
src (int) – Source rank.
comm (Optional[bagua_core.BaguaSingleCommunicatorPy]) – A handle of the Bagua communicator to work on. By default, the global communicator of the default process group will be used.
- bagua.torch_api.communication.scatter_inplace(tensor, count, src, comm=None)¶
The in-place version of
scatter
.- Parameters
tensor (torch.Tensor) – Input and output of the collective, On the
src
rank, it must have a size ofcomm.nranks * count
elements. On non-src ranks, its size must be equal tocount
.count (int) – The per-rank data count to scatter.
src (int) – Source rank.
comm (Optional[bagua_core.BaguaSingleCommunicatorPy]) – A handle of the Bagua communicator to work on. By default, the global communicator of the default process group will be used.
- bagua.torch_api.communication.send(tensor, dst, comm=None)¶
Sends a tensor to
dst
synchronously.- Parameters
tensor (torch.Tensor) – Tensor to send.
dst (int) – Destination rank.
comm (Optional[bagua_core.BaguaSingleCommunicatorPy]) – A handle of the Bagua communicator to work on. By default, the global communicator of the default process group will be used.